Data samlas in och lagras av olika anledningar. Timmar utöver det räknade (och ännu mer budget) investerade i insamling, intag, strukturering, validering och slutligen lagring av data; att säga att det är en värdefull tillgång är att köra hem en omtvistad punkt. Denna dag i ålder kan det i själva verket vara vår mest värdefulla vara.
Vissa data används strikt som ett arkiv. Kanske för att spela in eller spåra händelser som hände tidigare. Men den andra sidan av det myntet är att historiska data har värde för att grunda beslut för framtiden och framtida ansträngningar.
- Vilken dag ska vi ha vår rea på? (Planera för framtida försäljning baserat på hur vi gjorde tidigare.)
- Vilken säljare presterade bäst under kvartal ett? (När vi ser tillbaka, vem kan vi belöna för deras ansträngningar.)
- Vilken restaurang besöks mest i mitten av juli? (Resesäsongen är över... Vem kan vi sälja våra livsmedel och varor till?)
Du fattar bilden. Att använda data till hands är integrerat för alla organisationer.
Många företag bygger, baserar och tillhandahåller tjänster med data. De är beroende av det.
För flera månader sedan, beroende på när du läser det här, började jag gå för att träna, på allvar, för att gå ner i vikt, få grepp om min hälsa och för att söka en daglig bit av ensamhet från denna hektiska värld vi lever i.
Jag använde en mobil stegräknare-app för att spåra mina vandringar, även med tanke på vilka skor jag bar, eftersom jag har en tendens att vara extremt kräsen när det kommer till skor.
Även om denna data inte är i närheten av lika viktig som den som nämns i dessa scenarier ovan, för mig är en nyckelfaktor för att lära mig något, att använda något jag är intresserad av, kan relatera till och förstå.
Fönsterfunktioner har funnits på min radar att utforska länge nu. Så jag tänkte testa ett par av dem i det här inlägget. Efter att nyligen ha fått stöd i MySQL 8 (Besök denna Severalnines-blogg skrev jag om MySQL 8-uppgraderingar och nya tillägg där jag nämner dem kortfattat) att ekosystemet är det jag kommer att använda här. Var förvarnad, jag är inte en fönsteranalytisk funktionsguru.
Vad är en MySQL-fönsterfunktion?
MySQL-dokumentationen definierar dem som sådana: "En fönsterfunktion utför en aggregatliknande operation på en uppsättning frågerader. Men medan en aggregatoperation grupperar frågerader i en enda resultatrad, producerar en fönsterfunktion ett resultat för varje frågerad:"
Datauppsättning och inställningar för detta inlägg
Jag lagrar insamlad data från mina promenader i den här tabellen:
mysql> DESC hiking_stats;
+-----------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+--------------+------+-----+---------+-------+
| day_walked | date | YES | | NULL | |
| burned_calories | decimal(4,1) | YES | | NULL | |
| distance_walked | decimal(4,2) | YES | | NULL | |
| time_walking | time | YES | | NULL | |
| pace | decimal(2,1) | YES | | NULL | |
| shoes_worn | text | YES | | NULL | |
| trail_hiked | text | YES | | NULL | |
+-----------------+--------------+------+-----+---------+-------+
7 rows in set (0.01 sec)
Det finns nästan 90 dagars data här:
mysql> SELECT COUNT(*) FROM hiking_stats;
+----------+
| COUNT(*) |
+----------+
| 84 |
+----------+
1 row in set (0.00 sec)
Jag ska erkänna, jag är noggrann med mina skor så låt oss avgöra vilket par skor jag gillade mest:
mysql> SELECT DISTINCT shoes_worn, COUNT(*)
-> FROM hiking_stats
-> GROUP BY shoes_worn;
+---------------------------------------+----------+
| shoes_worn | COUNT(*) |
+---------------------------------------+----------+
| New Balance Trail Runners-All Terrain | 30 |
| Oboz Sawtooth Low | 47 |
| Keen Koven WP(keen-dry) | 6 |
| New Balance 510v2 | 1 |
+---------------------------------------+----------+
4 rows in set (0.00 sec)
För att ge en bättre, hanterbar demonstration på skärmen, kommer jag att begränsa den återstående delen av sökresultaten till bara de av favoritskorna jag bar 47 gånger.
Jag har också en trail_hiked kolumn och sedan jag var i 'ultra träningsläge ' under denna nästan tre månader långa period räknade jag till och med kalorier när jag klippte gården:
mysql> SELECT DISTINCT trail_hiked, COUNT(*)
-> FROM hiking_stats
-> GROUP BY trail_hiked;
+------------------------+----------+
| trail_hiked | COUNT(*) |
+------------------------+----------+
| Yard Mowing | 14 |
| Sandy Trail-Drive | 20 |
| West Boundary | 29 |
| House-Power Line Route | 10 |
| Tree Trail-extended | 11 |
+------------------------+----------+
5 rows in set (0.01 sec)
Men för att ytterligare begränsa datamängden kommer jag att filtrera bort dessa rader också:
mysql> SELECT COUNT(*)
-> FROM hiking_stats
-> WHERE shoes_worn = 'Oboz Sawtooth Low'
-> AND
-> trail_hiked <> 'Yard Mowing';
+----------+
| COUNT(*) |
+----------+
| 40 |
+----------+
1 row in set (0.01 sec)
För enkelhetens och användarvänlighetens skull kommer jag att skapa en VY över kolumner att arbeta med:
mysql> CREATE VIEW vw_fav_shoe_stats AS
-> (SELECT day_walked, burned_calories, distance_walked, time_walking, pace, trail_hiked
-> FROM hiking_stats
-> WHERE shoes_worn = 'Oboz Sawtooth Low'
-> AND trail_hiked <> 'Yard Mowing');
Query OK, 0 rows affected (0.19 sec)
Lämnar mig med denna uppsättning data:
mysql> SELECT * FROM vw_fav_shoe_stats;
+------------+-----------------+-----------------+--------------+------+------------------------+
| day_walked | burned_calories | distance_walked | time_walking | pace | trail_hiked |
+------------+-----------------+-----------------+--------------+------+------------------------+
| 2018-06-03 | 389.6 | 4.11 | 01:13:19 | 3.4 | Sandy Trail-Drive |
| 2018-06-04 | 394.6 | 4.26 | 01:14:15 | 3.4 | Sandy Trail-Drive |
| 2018-06-06 | 384.6 | 4.10 | 01:13:14 | 3.4 | Sandy Trail-Drive |
| 2018-06-07 | 382.7 | 4.12 | 01:12:52 | 3.4 | Sandy Trail-Drive |
| 2018-06-17 | 296.3 | 2.82 | 00:55:45 | 3.0 | West Boundary |
| 2018-06-18 | 314.7 | 3.08 | 00:59:13 | 3.1 | West Boundary |
| 2018-06-20 | 338.5 | 3.27 | 01:03:42 | 3.1 | West Boundary |
| 2018-06-21 | 339.5 | 3.40 | 01:03:54 | 3.2 | West Boundary |
| 2018-06-24 | 392.4 | 3.76 | 01:13:51 | 3.1 | House-Power Line Route |
| 2018-06-25 | 362.1 | 3.72 | 01:08:09 | 3.3 | West Boundary |
| 2018-06-26 | 380.5 | 3.94 | 01:11:36 | 3.3 | West Boundary |
| 2018-07-03 | 323.7 | 3.29 | 01:00:55 | 3.2 | West Boundary |
| 2018-07-04 | 342.8 | 3.47 | 01:04:31 | 3.2 | West Boundary |
| 2018-07-06 | 375.7 | 3.80 | 01:10:42 | 3.2 | West Boundary |
| 2018-07-07 | 347.6 | 3.40 | 01:05:25 | 3.1 | Sandy Trail-Drive |
| 2018-07-08 | 351.6 | 3.58 | 01:06:09 | 3.2 | West Boundary |
| 2018-07-09 | 336.0 | 3.28 | 01:03:13 | 3.1 | West Boundary |
| 2018-07-11 | 375.2 | 3.81 | 01:10:37 | 3.2 | West Boundary |
| 2018-07-12 | 325.9 | 3.28 | 01:01:20 | 3.2 | West Boundary |
| 2018-07-15 | 382.9 | 3.91 | 01:12:03 | 3.3 | House-Power Line Route |
| 2018-07-16 | 368.6 | 3.72 | 01:09:22 | 3.2 | West Boundary |
| 2018-07-17 | 339.4 | 3.46 | 01:03:52 | 3.3 | West Boundary |
| 2018-07-18 | 368.1 | 3.72 | 01:08:28 | 3.3 | West Boundary |
| 2018-07-19 | 339.2 | 3.44 | 01:03:06 | 3.3 | West Boundary |
| 2018-07-22 | 378.3 | 3.76 | 01:10:22 | 3.2 | West Boundary |
| 2018-07-23 | 322.9 | 3.28 | 01:00:03 | 3.3 | West Boundary |
| 2018-07-24 | 386.4 | 3.81 | 01:11:53 | 3.2 | West Boundary |
| 2018-07-25 | 379.9 | 3.83 | 01:10:39 | 3.3 | West Boundary |
| 2018-07-27 | 378.3 | 3.73 | 01:10:21 | 3.2 | West Boundary |
| 2018-07-28 | 337.4 | 3.39 | 01:02:45 | 3.2 | Sandy Trail-Drive |
| 2018-07-29 | 348.7 | 3.50 | 01:04:52 | 3.2 | West Boundary |
| 2018-07-30 | 361.6 | 3.69 | 01:07:15 | 3.3 | West Boundary |
| 2018-07-31 | 359.9 | 3.66 | 01:06:57 | 3.3 | West Boundary |
| 2018-08-01 | 336.1 | 3.37 | 01:01:48 | 3.3 | West Boundary |
| 2018-08-03 | 259.9 | 2.57 | 00:47:47 | 3.2 | West Boundary |
| 2018-08-05 | 341.2 | 3.37 | 01:02:44 | 3.2 | West Boundary |
| 2018-08-06 | 357.7 | 3.64 | 01:05:46 | 3.3 | West Boundary |
| 2018-08-17 | 184.2 | 1.89 | 00:39:00 | 2.9 | Tree Trail-extended |
| 2018-08-18 | 242.9 | 2.53 | 00:51:25 | 3.0 | Tree Trail-extended |
| 2018-08-30 | 204.4 | 1.95 | 00:37:35 | 3.1 | House-Power Line Route |
+------------+-----------------+-----------------+--------------+------+------------------------+
40 rows in set (0.00 sec)
Den första fönsterfunktionen jag kommer att titta på är ROW_NUMBER().
Anta att jag vill ha en resultatuppsättning sorterad efter kolumnen burned_calories för månaden "juli".
Naturligtvis kan jag hämta den informationen med den här frågan:
mysql> SELECT day_walked, burned_calories, trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE MONTHNAME(day_walked) = 'July'
-> ORDER BY burned_calories DESC;
+------------+-----------------+------------------------+
| day_walked | burned_calories | trail_hiked |
+------------+-----------------+------------------------+
| 2018-07-24 | 386.4 | West Boundary |
| 2018-07-15 | 382.9 | House-Power Line Route |
| 2018-07-25 | 379.9 | West Boundary |
| 2018-07-22 | 378.3 | West Boundary |
| 2018-07-27 | 378.3 | West Boundary |
| 2018-07-06 | 375.7 | West Boundary |
| 2018-07-11 | 375.2 | West Boundary |
| 2018-07-16 | 368.6 | West Boundary |
| 2018-07-18 | 368.1 | West Boundary |
| 2018-07-30 | 361.6 | West Boundary |
| 2018-07-31 | 359.9 | West Boundary |
| 2018-07-08 | 351.6 | West Boundary |
| 2018-07-29 | 348.7 | West Boundary |
| 2018-07-07 | 347.6 | Sandy Trail-Drive |
| 2018-07-04 | 342.8 | West Boundary |
| 2018-07-17 | 339.4 | West Boundary |
| 2018-07-19 | 339.2 | West Boundary |
| 2018-07-28 | 337.4 | Sandy Trail-Drive |
| 2018-07-09 | 336.0 | West Boundary |
| 2018-07-12 | 325.9 | West Boundary |
| 2018-07-03 | 323.7 | West Boundary |
| 2018-07-23 | 322.9 | West Boundary |
+------------+-----------------+------------------------+
22 rows in set (0.01 sec)
Men av någon anledning (kanske personlig tillfredsställelse) vill jag utmärka en ranking bland de returnerade raderna som börjar med 1 som anger det högsta antalet förbrända_kalorier, hela vägen till (n) rader i resultatuppsättningen.
ROW_NUMBER(), kan hantera detta inga problem alls:
mysql> SELECT day_walked, burned_calories,
-> ROW_NUMBER() OVER(ORDER BY burned_calories DESC)
-> AS position, trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE MONTHNAME(day_walked) = 'July';
+------------+-----------------+----------+------------------------+
| day_walked | burned_calories | position | trail_hiked |
+------------+-----------------+----------+------------------------+
| 2018-07-24 | 386.4 | 1 | West Boundary |
| 2018-07-15 | 382.9 | 2 | House-Power Line Route |
| 2018-07-25 | 379.9 | 3 | West Boundary |
| 2018-07-22 | 378.3 | 4 | West Boundary |
| 2018-07-27 | 378.3 | 5 | West Boundary |
| 2018-07-06 | 375.7 | 6 | West Boundary |
| 2018-07-11 | 375.2 | 7 | West Boundary |
| 2018-07-16 | 368.6 | 8 | West Boundary |
| 2018-07-18 | 368.1 | 9 | West Boundary |
| 2018-07-30 | 361.6 | 10 | West Boundary |
| 2018-07-31 | 359.9 | 11 | West Boundary |
| 2018-07-08 | 351.6 | 12 | West Boundary |
| 2018-07-29 | 348.7 | 13 | West Boundary |
| 2018-07-07 | 347.6 | 14 | Sandy Trail-Drive |
| 2018-07-04 | 342.8 | 15 | West Boundary |
| 2018-07-17 | 339.4 | 16 | West Boundary |
| 2018-07-19 | 339.2 | 17 | West Boundary |
| 2018-07-28 | 337.4 | 18 | Sandy Trail-Drive |
| 2018-07-09 | 336.0 | 19 | West Boundary |
| 2018-07-12 | 325.9 | 20 | West Boundary |
| 2018-07-03 | 323.7 | 21 | West Boundary |
| 2018-07-23 | 322.9 | 22 | West Boundary |
+------------+-----------------+----------+------------------------+
22 rows in set (0.00 sec)
Du kan se raden med mängden burnt_calories på 386,4 har position 1, medan raden med värdet 322,9 har 22, vilket är det lägsta (eller lägsta) beloppet bland de returnerade raderna.
Jag kommer att använda ROW_NUMBER() för något lite mer intressant när vi utvecklas. Först när jag fick reda på om det användes i det sammanhanget, insåg jag verkligen en del av dess verkliga kraft.
Nästa, låt oss besöka RANK()-fönsterfunktionen för att tillhandahålla en annan typ av 'ranking ' bland raderna. Vi kommer fortfarande att inrikta oss på kolumnvärdet för brända_kalorier. Och även om RANK() liknar ROW_NUMBER() genom att de rankar rader något, introducerar den en subtil skillnad under vissa omständigheter.
Jag kommer att ytterligare begränsa antalet rader som helhet genom att filtrera alla poster som inte är i månaden "juli" utan riktar in sig på ett specifikt spår:
mysql> SELECT day_walked, burned_calories,
-> RANK() OVER(ORDER BY burned_calories DESC) AS position,
-> trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE MONTHNAME(day_walked) = 'July'
-> AND trail_hiked = 'West Boundary';
+------------+-----------------+----------+---------------+
| day_walked | burned_calories | position | trail_hiked |
+------------+-----------------+----------+---------------+
| 2018-07-24 | 386.4 | 1 | West Boundary |
| 2018-07-25 | 379.9 | 2 | West Boundary |
| 2018-07-22 | 378.3 | 3 | West Boundary |
| 2018-07-27 | 378.3 | 3 | West Boundary |
| 2018-07-06 | 375.7 | 5 | West Boundary |
| 2018-07-11 | 375.2 | 6 | West Boundary |
| 2018-07-16 | 368.6 | 7 | West Boundary |
| 2018-07-18 | 368.1 | 8 | West Boundary |
| 2018-07-30 | 361.6 | 9 | West Boundary |
| 2018-07-31 | 359.9 | 10 | West Boundary |
| 2018-07-08 | 351.6 | 11 | West Boundary |
| 2018-07-29 | 348.7 | 12 | West Boundary |
| 2018-07-04 | 342.8 | 13 | West Boundary |
| 2018-07-17 | 339.4 | 14 | West Boundary |
| 2018-07-19 | 339.2 | 15 | West Boundary |
| 2018-07-09 | 336.0 | 16 | West Boundary |
| 2018-07-12 | 325.9 | 17 | West Boundary |
| 2018-07-03 | 323.7 | 18 | West Boundary |
| 2018-07-23 | 322.9 | 19 | West Boundary |
+------------+-----------------+----------+---------------+
19 rows in set (0.01 sec)
Lägger du märke till något konstigt här? Skiljer sig från ROW_NUMBER()?
Kolla in positionsvärdet för dessa rader "2018-07-22" och "2018-07-27". De ligger oavgjort på tredje plats.
Med goda skäl eftersom burned_calorie-värdet på 378,3 finns i båda raderna.
Hur skulle ROW_NUMBER() rangordna dem?
Låt oss ta reda på:
mysql> SELECT day_walked, burned_calories,
-> ROW_NUMBER() OVER(ORDER BY burned_calories DESC) AS position,
-> trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE MONTHNAME(day_walked) = 'July'
-> AND trail_hiked = 'West Boundary';
+------------+-----------------+----------+---------------+
| day_walked | burned_calories | position | trail_hiked |
+------------+-----------------+----------+---------------+
| 2018-07-24 | 386.4 | 1 | West Boundary |
| 2018-07-25 | 379.9 | 2 | West Boundary |
| 2018-07-22 | 378.3 | 3 | West Boundary |
| 2018-07-27 | 378.3 | 4 | West Boundary |
| 2018-07-06 | 375.7 | 5 | West Boundary |
| 2018-07-11 | 375.2 | 6 | West Boundary |
| 2018-07-16 | 368.6 | 7 | West Boundary |
| 2018-07-18 | 368.1 | 8 | West Boundary |
| 2018-07-30 | 361.6 | 9 | West Boundary |
| 2018-07-31 | 359.9 | 10 | West Boundary |
| 2018-07-08 | 351.6 | 11 | West Boundary |
| 2018-07-29 | 348.7 | 12 | West Boundary |
| 2018-07-04 | 342.8 | 13 | West Boundary |
| 2018-07-17 | 339.4 | 14 | West Boundary |
| 2018-07-19 | 339.2 | 15 | West Boundary |
| 2018-07-09 | 336.0 | 16 | West Boundary |
| 2018-07-12 | 325.9 | 17 | West Boundary |
| 2018-07-03 | 323.7 | 18 | West Boundary |
| 2018-07-23 | 322.9 | 19 | West Boundary |
+------------+-----------------+----------+---------------+
19 rows in set (0.06 sec)
Hmmm...
Inga kopplingar i positionskolumnnumreringen den här gången.
Men vem får företräde?
Såvitt jag vet, för en förutsägbar ordning, måste du sannolikt bestämma den på något annat sätt i frågan (t.ex. kolumnen time_walking i det här fallet?).
Men vi är inte klara ännu med rankningsalternativ. Här är DENSE_RANK():
mysql> SELECT day_walked, burned_calories,
-> DENSE_RANK() OVER(ORDER BY burned_calories DESC) AS position,
-> trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE MONTHNAME(day_walked) = 'July'
-> AND trail_hiked = 'West Boundary';
+------------+-----------------+----------+---------------+
| day_walked | burned_calories | position | trail_hiked |
+------------+-----------------+----------+---------------+
| 2018-07-24 | 386.4 | 1 | West Boundary |
| 2018-07-25 | 379.9 | 2 | West Boundary |
| 2018-07-22 | 378.3 | 3 | West Boundary |
| 2018-07-27 | 378.3 | 3 | West Boundary |
| 2018-07-06 | 375.7 | 4 | West Boundary |
| 2018-07-11 | 375.2 | 5 | West Boundary |
| 2018-07-16 | 368.6 | 6 | West Boundary |
| 2018-07-18 | 368.1 | 7 | West Boundary |
| 2018-07-30 | 361.6 | 8 | West Boundary |
| 2018-07-31 | 359.9 | 9 | West Boundary |
| 2018-07-08 | 351.6 | 10 | West Boundary |
| 2018-07-29 | 348.7 | 11 | West Boundary |
| 2018-07-04 | 342.8 | 12 | West Boundary |
| 2018-07-17 | 339.4 | 13 | West Boundary |
| 2018-07-19 | 339.2 | 14 | West Boundary |
| 2018-07-09 | 336.0 | 15 | West Boundary |
| 2018-07-12 | 325.9 | 16 | West Boundary |
| 2018-07-03 | 323.7 | 17 | West Boundary |
| 2018-07-23 | 322.9 | 18 | West Boundary |
+------------+-----------------+----------+---------------+
19 rows in set (0.00 sec)
Skillnaden kvarstår, men numreringen är annorlunda i var rader räknas , fortsätter genom de återstående resultaten.
Där RANK() inledde räkningen med 5 efter oavgjort, plockar DENSE_RANK() upp vid nästa nummer, vilket är 4 i det här fallet, eftersom oavgjort inträffade på rad 3.
Jag ska vara den första att erkänna att dessa olika radrankningsmönster är ganska intressanta, men hur kan du använda dem för en meningsfull resultatuppsättning?
ClusterControlSingle Console för hela din databasinfrastrukturTa reda på vad mer som är nytt i ClusterControlInstallera ClusterControl GRATISEn bonustanke
Jag måste ge kredit där kredit ska. Jag lärde mig så mycket om fönsterfunktioner från en underbar serie på YouTube och en video, i synnerhet, inspirerade mig till nästa exempel. Kom ihåg även om exemplen i den serien visas med en ej-öppen källkodsdatabas system (släng inte de digitala ruttna frukterna och grönsakerna på mig), det finns massor att lära av videorna överlag.
Jag ser ett mönster i de flesta frågeresultaten hittills som jag vill utforska. Jag kommer inte att filtrera efter någon månad eller spår.
Det jag vill veta är de på varandra följande dagarna då jag brände mer än 350 kalorier. Ännu bättre, grupper på den tiden.
Här är grundfrågan jag kommer att börja med och bygga vidare på:
mysql> SELECT day_walked, burned_calories,
-> ROW_NUMBER() OVER(ORDER BY day_walked ASC) AS positional_bound,
-> trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE burned_calories > 350;
+------------+-----------------+------------------+------------------------+
| day_walked | burned_calories | positional_bound | trail_hiked |
+------------+-----------------+------------------+------------------------+
| 2018-06-03 | 389.6 | 1 | Sandy Trail-Drive |
| 2018-06-04 | 394.6 | 2 | Sandy Trail-Drive |
| 2018-06-06 | 384.6 | 3 | Sandy Trail-Drive |
| 2018-06-07 | 382.7 | 4 | Sandy Trail-Drive |
| 2018-06-24 | 392.4 | 5 | House-Power Line Route |
| 2018-06-25 | 362.1 | 6 | West Boundary |
| 2018-06-26 | 380.5 | 7 | West Boundary |
| 2018-07-06 | 375.7 | 8 | West Boundary |
| 2018-07-08 | 351.6 | 9 | West Boundary |
| 2018-07-11 | 375.2 | 10 | West Boundary |
| 2018-07-15 | 382.9 | 11 | House-Power Line Route |
| 2018-07-16 | 368.6 | 12 | West Boundary |
| 2018-07-18 | 368.1 | 13 | West Boundary |
| 2018-07-22 | 378.3 | 14 | West Boundary |
| 2018-07-24 | 386.4 | 15 | West Boundary |
| 2018-07-25 | 379.9 | 16 | West Boundary |
| 2018-07-27 | 378.3 | 17 | West Boundary |
| 2018-07-30 | 361.6 | 18 | West Boundary |
| 2018-07-31 | 359.9 | 19 | West Boundary |
| 2018-08-06 | 357.7 | 20 | West Boundary |
+------------+-----------------+------------------+------------------------+
20 rows in set (0.00 sec)
Vi har redan sett ROW_NUMBER() men nu kommer det verkligen in i bilden.
För att få detta att fungera (åtminstone i MySQL) var jag tvungen att använda DATE_SUB()-funktionen eftersom vi med denna teknik i huvudsak subtraherar ett tal - värdet som tillhandahålls av ROW_NUMBER() från day_walked-datumkolumnen i samma rad, vilket i tur, ger ett datum själv via beräkningen:
mysql> SELECT day_walked AS day_of_walk,
-> DATE_SUB(day_walked, INTERVAL ROW_NUMBER() OVER(ORDER BY day_walked ASC) DAY) AS positional_bound,
-> burned_calories,
-> trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE burned_calories > 350;
+-------------+------------------+-----------------+------------------------+
| day_of_walk | positional_bound | burned_calories | trail_hiked |
+-------------+------------------+-----------------+------------------------+
| 2018-06-03 | 2018-06-02 | 389.6 | Sandy Trail-Drive |
| 2018-06-04 | 2018-06-02 | 394.6 | Sandy Trail-Drive |
| 2018-06-06 | 2018-06-03 | 384.6 | Sandy Trail-Drive |
| 2018-06-07 | 2018-06-03 | 382.7 | Sandy Trail-Drive |
| 2018-06-24 | 2018-06-19 | 392.4 | House-Power Line Route |
| 2018-06-25 | 2018-06-19 | 362.1 | West Boundary |
| 2018-06-26 | 2018-06-19 | 380.5 | West Boundary |
| 2018-07-06 | 2018-06-28 | 375.7 | West Boundary |
| 2018-07-08 | 2018-06-29 | 351.6 | West Boundary |
| 2018-07-11 | 2018-07-01 | 375.2 | West Boundary |
| 2018-07-15 | 2018-07-04 | 382.9 | House-Power Line Route |
| 2018-07-16 | 2018-07-04 | 368.6 | West Boundary |
| 2018-07-18 | 2018-07-05 | 368.1 | West Boundary |
| 2018-07-22 | 2018-07-08 | 378.3 | West Boundary |
| 2018-07-24 | 2018-07-09 | 386.4 | West Boundary |
| 2018-07-25 | 2018-07-09 | 379.9 | West Boundary |
| 2018-07-27 | 2018-07-10 | 378.3 | West Boundary |
| 2018-07-30 | 2018-07-12 | 361.6 | West Boundary |
| 2018-07-31 | 2018-07-12 | 359.9 | West Boundary |
| 2018-08-06 | 2018-07-17 | 357.7 | West Boundary |
+-------------+------------------+-----------------+------------------------+
20 rows in set (0.00 sec)
Men utan DATE_SUB() slutar du med detta (eller åtminstone jag gjorde det):
mysql> SELECT day_walked AS day_of_walk,
-> day_walked - ROW_NUMBER() OVER(ORDER BY day_walked ASC) AS positional_bound,
-> burned_calories,
-> trail_hiked
-> FROM vw_fav_shoe_stats
-> WHERE burned_calories > 350;
+-------------+------------------+-----------------+------------------------+
| day_of_walk | positional_bound | burned_calories | trail_hiked |
+-------------+------------------+-----------------+------------------------+
| 2018-06-03 | 20180602 | 389.6 | Sandy Trail-Drive |
| 2018-06-04 | 20180602 | 394.6 | Sandy Trail-Drive |
| 2018-06-06 | 20180603 | 384.6 | Sandy Trail-Drive |
| 2018-06-07 | 20180603 | 382.7 | Sandy Trail-Drive |
| 2018-06-24 | 20180619 | 392.4 | House-Power Line Route |
| 2018-06-25 | 20180619 | 362.1 | West Boundary |
| 2018-06-26 | 20180619 | 380.5 | West Boundary |
| 2018-07-06 | 20180698 | 375.7 | West Boundary |
| 2018-07-08 | 20180699 | 351.6 | West Boundary |
| 2018-07-11 | 20180701 | 375.2 | West Boundary |
| 2018-07-15 | 20180704 | 382.9 | House-Power Line Route |
| 2018-07-16 | 20180704 | 368.6 | West Boundary |
| 2018-07-18 | 20180705 | 368.1 | West Boundary |
| 2018-07-22 | 20180708 | 378.3 | West Boundary |
| 2018-07-24 | 20180709 | 386.4 | West Boundary |
| 2018-07-25 | 20180709 | 379.9 | West Boundary |
| 2018-07-27 | 20180710 | 378.3 | West Boundary |
| 2018-07-30 | 20180712 | 361.6 | West Boundary |
| 2018-07-31 | 20180712 | 359.9 | West Boundary |
| 2018-08-06 | 20180786 | 357.7 | West Boundary |
+-------------+------------------+-----------------+------------------------+
20 rows in set (0.04 sec)
Hej, det ser inte så illa ut egentligen.
Vad ger?
Eh, raden med ett positionsbundet värde på '20180698'...
Vänta lite, detta är tänkt att beräkna ett datumvärde genom att subtrahera talet ROW_NUMBER() från kolumnen day_of_walk.
Rätt.
Jag vet inte om dig, men jag känner inte till en månad med 98 dagar!
Men om det finns en, ta med de extra lönecheckarna!
Bortsett från det roliga var detta uppenbarligen felaktigt och fick mig att (så småningom) använda DATE_SUB(), vilket ger en korrekt resultatuppsättning som sedan tillåter mig att köra den här frågan:
mysql> SELECT MIN(t.day_of_walk),
-> MAX(t.day_of_walk),
-> COUNT(*) AS num_of_hikes
-> FROM (SELECT day_walked AS day_of_walk,
-> DATE_SUB(day_walked, INTERVAL ROW_NUMBER() OVER(ORDER BY day_walked ASC) DAY) AS positional_bound
-> FROM vw_fav_shoe_stats
-> WHERE burned_calories > 350) AS t
-> GROUP BY t.positional_bound
-> ORDER BY 1;
+--------------------+--------------------+--------------+
| MIN(t.day_of_walk) | MAX(t.day_of_walk) | num_of_hikes |
+--------------------+--------------------+--------------+
| 2018-06-03 | 2018-06-04 | 2 |
| 2018-06-06 | 2018-06-07 | 2 |
| 2018-06-24 | 2018-06-26 | 3 |
| 2018-07-06 | 2018-07-06 | 1 |
| 2018-07-08 | 2018-07-08 | 1 |
| 2018-07-11 | 2018-07-11 | 1 |
| 2018-07-15 | 2018-07-16 | 2 |
| 2018-07-18 | 2018-07-18 | 1 |
| 2018-07-22 | 2018-07-22 | 1 |
| 2018-07-24 | 2018-07-25 | 2 |
| 2018-07-27 | 2018-07-27 | 1 |
| 2018-07-30 | 2018-07-31 | 2 |
| 2018-08-06 | 2018-08-06 | 1 |
+--------------------+--------------------+--------------+
13 rows in set (0.12 sec)
Relaterade resurser ClusterControl för MySQL MySQL 2018:Vad finns i 8.0 och andra observationer MySQL Performance Benchmarking:MySQL 5.7 vs MySQL 8.0 I grund och botten har jag lindat resultatuppsättningen från den analytiska frågan, i form av en härledd tabell, och frågade efter den för:ett start- och slutdatum, en räkning av vad jag har märkt num_of_hikes, sedan grupperat i kolumnen positional_bound, vilket slutligen ger uppsättningar av grupper av dagar i rad där jag brände mer än 350 kalorier.
Du kan se i datumintervallet 2018-06-24 till 2018-06-26, vilket resulterade i att 3 dagar i följd uppfyller kriteriet för förbränning av kalorier på 350 i WHERE-klausulen.
Inte så illa om jag inte får säga det själv, men definitivt en skiva jag vill prova och bäst!
Slutsats
Fönsterfunktioner är i en egen värld och liga. Jag har inte ens repat ytan på dem, eftersom jag bara har täckt tre av dem i en "hög nivå ' inledande och kanske trivial mening. Men förhoppningsvis upptäcker du genom det här inlägget att du kan söka efter ganska intressanta och potentiellt insiktsfulla data med en "noga minimal ' användning av dem.
Tack för att du läser.