sql >> Databasteknik >  >> RDS >> Sqlserver

Finns det någon linjär regressionsfunktion i SQL Server?

Så vitt jag vet finns det ingen. Att skriva en är dock ganska enkelt. Följande ger dig konstant alfa- och lutningsbeta för y =Alpha + Beta * x + epsilon:

-- test data (GroupIDs 1, 2 normal regressions, 3, 4 = no variance)
WITH some_table(GroupID, x, y) AS
(       SELECT 1,  1,  1    UNION SELECT 1,  2,  2    UNION SELECT 1,  3,  1.3  
  UNION SELECT 1,  4,  3.75 UNION SELECT 1,  5,  2.25 UNION SELECT 2, 95, 85    
  UNION SELECT 2, 85, 95    UNION SELECT 2, 80, 70    UNION SELECT 2, 70, 65    
  UNION SELECT 2, 60, 70    UNION SELECT 3,  1,  2    UNION SELECT 3,  1, 3
  UNION SELECT 4,  1,  2    UNION SELECT 4,  2,  2),
 -- linear regression query
/*WITH*/ mean_estimates AS
(   SELECT GroupID
          ,AVG(x * 1.)                                             AS xmean
          ,AVG(y * 1.)                                             AS ymean
    FROM some_table
    GROUP BY GroupID
),
stdev_estimates AS
(   SELECT pd.GroupID
          -- T-SQL STDEV() implementation is not numerically stable
          ,CASE      SUM(SQUARE(x - xmean)) WHEN 0 THEN 1 
           ELSE SQRT(SUM(SQUARE(x - xmean)) / (COUNT(*) - 1)) END AS xstdev
          ,     SQRT(SUM(SQUARE(y - ymean)) / (COUNT(*) - 1))     AS ystdev
    FROM some_table pd
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
    GROUP BY pd.GroupID, pm.xmean, pm.ymean
),
standardized_data AS                   -- increases numerical stability
(   SELECT pd.GroupID
          ,(x - xmean) / xstdev                                    AS xstd
          ,CASE ystdev WHEN 0 THEN 0 ELSE (y - ymean) / ystdev END AS ystd
    FROM some_table pd
    INNER JOIN stdev_estimates ps ON ps.GroupID = pd.GroupID
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
),
standardized_beta_estimates AS
(   SELECT GroupID
          ,CASE WHEN SUM(xstd * xstd) = 0 THEN 0
                ELSE SUM(xstd * ystd) / (COUNT(*) - 1) END         AS betastd
    FROM standardized_data pd
    GROUP BY GroupID
)
SELECT pb.GroupID
      ,ymean - xmean * betastd * ystdev / xstdev                   AS Alpha
      ,betastd * ystdev / xstdev                                   AS Beta
FROM standardized_beta_estimates pb
INNER JOIN stdev_estimates ps ON ps.GroupID = pb.GroupID
INNER JOIN mean_estimates  pm ON pm.GroupID = pb.GroupID

Här GroupID används för att visa hur man grupperar efter något värde i din källdatatabell. Om du bara vill ha statistik över all data i tabellen (inte specifika undergrupper) kan du släppa den och sammanfogningar. Jag har använt WITH uttalande för tydlighetens skull. Som ett alternativ kan du istället använda underfrågor. Var uppmärksam på precisionen för den datatyp som används i dina tabeller eftersom den numeriska stabiliteten snabbt kan försämras om precisionen inte är tillräckligt hög i förhållande till dina data.

EDIT: (som svar på Peters fråga för ytterligare statistik som R2 i kommentarerna)

Du kan enkelt beräkna ytterligare statistik med samma teknik. Här är en version med R2, korrelation och samvariationsprov:

-- test data (GroupIDs 1, 2 normal regressions, 3, 4 = no variance)
WITH some_table(GroupID, x, y) AS
(       SELECT 1,  1,  1    UNION SELECT 1,  2,  2    UNION SELECT 1,  3,  1.3  
  UNION SELECT 1,  4,  3.75 UNION SELECT 1,  5,  2.25 UNION SELECT 2, 95, 85    
  UNION SELECT 2, 85, 95    UNION SELECT 2, 80, 70    UNION SELECT 2, 70, 65    
  UNION SELECT 2, 60, 70    UNION SELECT 3,  1,  2    UNION SELECT 3,  1, 3
  UNION SELECT 4,  1,  2    UNION SELECT 4,  2,  2),
 -- linear regression query
/*WITH*/ mean_estimates AS
(   SELECT GroupID
          ,AVG(x * 1.)                                             AS xmean
          ,AVG(y * 1.)                                             AS ymean
    FROM some_table pd
    GROUP BY GroupID
),
stdev_estimates AS
(   SELECT pd.GroupID
          -- T-SQL STDEV() implementation is not numerically stable
          ,CASE      SUM(SQUARE(x - xmean)) WHEN 0 THEN 1 
           ELSE SQRT(SUM(SQUARE(x - xmean)) / (COUNT(*) - 1)) END AS xstdev
          ,     SQRT(SUM(SQUARE(y - ymean)) / (COUNT(*) - 1))     AS ystdev
    FROM some_table pd
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
    GROUP BY pd.GroupID, pm.xmean, pm.ymean
),
standardized_data AS                   -- increases numerical stability
(   SELECT pd.GroupID
          ,(x - xmean) / xstdev                                    AS xstd
          ,CASE ystdev WHEN 0 THEN 0 ELSE (y - ymean) / ystdev END AS ystd
    FROM some_table pd
    INNER JOIN stdev_estimates ps ON ps.GroupID = pd.GroupID
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
),
standardized_beta_estimates AS
(   SELECT GroupID
          ,CASE WHEN SUM(xstd * xstd) = 0 THEN 0
                ELSE SUM(xstd * ystd) / (COUNT(*) - 1) END         AS betastd
    FROM standardized_data
    GROUP BY GroupID
)
SELECT pb.GroupID
      ,ymean - xmean * betastd * ystdev / xstdev                   AS Alpha
      ,betastd * ystdev / xstdev                                   AS Beta
      ,CASE ystdev WHEN 0 THEN 1 ELSE betastd * betastd END        AS R2
      ,betastd                                                     AS Correl
      ,betastd * xstdev * ystdev                                   AS Covar
FROM standardized_beta_estimates pb
INNER JOIN stdev_estimates ps ON ps.GroupID = pb.GroupID
INNER JOIN mean_estimates  pm ON pm.GroupID = pb.GroupID

REDIGERA 2 förbättrar numerisk stabilitet genom att standardisera data (istället för att bara centrera) och genom att ersätta STDEV på grund av numeriska stabilitetsproblem . För mig verkar den nuvarande implementeringen vara den bästa avvägningen mellan stabilitet och komplexitet. Jag skulle kunna förbättra stabiliteten genom att ersätta min standardavvikelse med en numeriskt stabil onlinealgoritm, men detta skulle komplicera implementeringen avsevärt (och sakta ner den). På liknande sätt kan implementeringar som använder t.ex. Kahan(-Babuška-Neumaier) kompensationer för SUM och AVG verkar prestera måttligt bättre i begränsade tester, men gör frågan mycket mer komplex. Och så länge jag inte vet hur T-SQL implementerar SUM och AVG (t.ex. att den redan använder parvis summering), jag kan inte garantera att sådana ändringar alltid förbättrar noggrannheten.



  1. ställ bara aktuell_tidsstämpel när du infogar en ny rad

  2. Använder du resultatet av ett uttryck (t.ex. funktionsanrop) i en parameterlista för lagrad procedur?

  3. MySQL IN() för två värden/matris?

  4. Bästa datatypen för att lagra ett långt nummer bestående av 0 och 1