sql >> Databasteknik >  >> NoSQL >> MongoDB

Mongo / Mongoose - Aggregering efter datum

Ett bra tillvägagångssätt skulle vara att dela upp den aggregerade pipelinen i flera steg med syftet att beräkna aggregaten för varje grupp, det vill säga årliga, månatliga och veckovisa aggregat.

Jag har gjort ett svagt försök att generera nämnda pipeline men är inte säker på om det är det du är ute efter men kan ge dig några ledtrådar till en lösning, ännu bättre en optimal. Kanske kan någon annan ge ett bättre svar.

Överväg följande otestade pipeline:

db.statements.aggregate([
    {
        "$group": {
            "_id": {
                "name": "$name",
                "year": { "$year": "$date" },
                "month": { "$month": "$date" },
                "week": { "$week": "$date" }
            },
            "total": { "$sum": "$amount" }
        }
    },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "year": "$_id.year"
            },
            "YearlySpends": { "$push": "$total" },
            "totalYearlyAmount": { "$sum": "$total" },
            "data": { "$push": "$$ROOT" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "month": "$data._id.month"
            },
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$push": "$data.total" },
            "totalMonthlyAmount": { "$sum": "$data.total" },
            "data": { "$push": "$data" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "week": "$data._id.week"
            },
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$first": "$MonthlySpends" },
            "totalMonthlyAmount": { "$first": "$totalMonthlyAmount" },
            "WeeklySpends": { "$push": "$data.total" },
            "totalWeeklyAmount": { "$sum": "$data.total" },
            "data": { "$push": "$data" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": "$data._id",
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$first": "$MonthlySpends" },
            "totalMonthlyAmount": { "$first": "$totalMonthlyAmount" },
            "WeeklySpends": { "$first": "$WeeklySpends" },
            "totalWeeklyAmount": { "$first": "$totalWeeklyAmount" }
        }
    }
])

Exempelutdata

/* 1 */
{
    "_id" : {
        "name" : "Tesco",
        "year" : 2017,
        "month" : 3,
        "week" : 11
    },
    "YearlySpends" : [ 
        -3.3
    ],
    "totalYearlyAmount" : -3.3,
    "MonthlySpends" : [ 
        -3.3
    ],
    "totalMonthlyAmount" : -3.3,
    "WeeklySpends" : [ 
        -3.3
    ],
    "totalWeeklyAmount" : -3.3
}

/* 2 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 4,
        "week" : 17
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -33.3
    ],
    "totalMonthlyAmount" : -33.3,
    "WeeklySpends" : [ 
        -33.3
    ],
    "totalWeeklyAmount" : -33.3
}

/* 3 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 3,
        "week" : 12
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -3.3, 
        -26.3
    ],
    "totalMonthlyAmount" : -29.6,
    "WeeklySpends" : [ 
        -3.3
    ],
    "totalWeeklyAmount" : -3.3
}

/* 4 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 3,
        "week" : 11
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -3.3, 
        -26.3
    ],
    "totalMonthlyAmount" : -29.6,
    "WeeklySpends" : [ 
        -26.3
    ],
    "totalWeeklyAmount" : -26.3
}

/* 5 */
{
    "_id" : {
        "name" : "Sky",
        "year" : 2017,
        "month" : 3,
        "week" : 9
    },
    "YearlySpends" : [ 
        -63.3
    ],
    "totalYearlyAmount" : -63.3,
    "MonthlySpends" : [ 
        -63.3
    ],
    "totalMonthlyAmount" : -63.3,
    "WeeklySpends" : [ 
        -63.3
    ],
    "totalWeeklyAmount" : -63.3
}

/* 6 */
{
    "_id" : {
        "name" : "Amazon",
        "year" : 2017,
        "month" : 3,
        "week" : 12
    },
    "YearlySpends" : [ 
        -61.3
    ],
    "totalYearlyAmount" : -61.3,
    "MonthlySpends" : [ 
        -61.3
    ],
    "totalMonthlyAmount" : -61.3,
    "WeeklySpends" : [ 
        -61.3
    ],
    "totalWeeklyAmount" : -61.3
}

UPPDATERA

Om du vill inkludera filter i den aggregerade operationen skulle jag föreslå att du använder $match fråga som det första pipelinesteget. Men om det finns en initial $match steg så skulle de föregående stegen ändras något eftersom du kommer att aggregera filtrerade resultat, mycket annorlunda än att aggregera alla dokument som helhet initialt och sedan tillämpa filtret på resultaten.

Om du ska ta filter-först-sedan-aggregatet överväg att köra en sammanställd operation som använder $match som det första steget som filtrerar dokumenten efter leverantör, sedan en föregående $redact pipeline-steg för att ytterligare filtrera dokumenten på månadsdelen av datumfältet och sedan skulle resten vara $group stadier:

Statements.aggregate([
    { "$match": { "name": req.params.vendor } },
    {
        "$redact": {
            "$cond": [
                { "$eq": [{ "$month": "$date" }, parseInt(req.params.month) ]},
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    },
    .....
    /*
        add the remaining pipeline steps after
    */
], function(err, data){
    if (err) throw err;
    console.log(data);
})

Om du ska ta gruppen-först-sedan-filtret rutt, då skulle filtret ligga efter den sista pipeline som ger det grupperade resultatet men tillämpas på olika fält eftersom dokumenten längs den delen av strömmen skulle skilja sig från det ursprungliga schemat.

Den här rutten fungerar inte eftersom du börjar den sammanlagda operationen med alla dokument i samlingen och sedan filtrerar efteråt:

Statements.aggregate([
    .....
    /*
        place the initial pipeline steps from 
        the original query above here
    */
    .....
    { 
        "$match": { 
            "_id.name": req.params.vendor,
            "_id.month": parseInt(req.params.month)
        } 
    }
], function(err, data){
    if (err) throw err;
    console.log(data);
})

För flera datumfilterparametrar, $redact operatören skulle vara

{
    "$redact": {
        "$cond": [
            {
                "$and": [
                     { "$eq": [{ "$year": "$date" },  parseInt(req.params.year)  ]},
                     { "$eq": [{ "$month": "$date" }, parseInt(req.params.month) ]},
                     { "$eq": [{ "$week": "$date" },  parseInt(req.params.week)  ]}
                ]
            },
            "$$KEEP",
            "$$PRUNE"
        ]
    }
}



  1. Sortera objekt efter värde mongodb

  2. Tips för att uppgradera till den senaste MongoDB-versionen

  3. node.js moongodb två fynd

  4. Elem match returnerar all data medan jag bara behöver den valda datan