sql >> Databasteknik >  >> RDS >> Mysql

Hur bygger man en hybrid_metod som räknar antalet poster från de senaste X dagarna?

Nedan finns det (nästan) fullständiga kodavsnittet:

# ... omitted import statements and session configuration

def _date(date_str):
    return datetime.strptime(date_str, "%Y-%m-%d")


class Match(Base):
    __tablename__ = "match"

    match_id = Column(Integer, primary_key=True)
    date = Column(Date, nullable=False)

    @hybrid_method
    def match_count(self, timespan_days):
        cut_off = self.date - timedelta(days=timespan_days)
        sess = object_session(self)
        M = Match
        q = (
            sess.query(M)
            # .filter(M.match_id != self.match_id)  # option-1: only other on the same day
            .filter(M.match_id < self.match_id)  # option-2: only smaller-id on the same day (as in OP)
            .filter(M.date <= self.date)
            .filter(M.date >= cut_off)
        )
        return q.count()

    @match_count.expression
    def match_count(cls, timespan_days):
        M = aliased(Match, name="other")
        cut_off = cls.date - timespan_days
        q = (
            select([func.count(M.match_id)])
            # .filter(Match.match_id != self.match_id)  # option-1: only other on the same day
            .where(M.match_id < cls.match_id)  # option-2: only smaller-id on the same day (as in OP)
            .where(M.date <= cls.date)
            .where(M.date >= cut_off)
        )
        return q.label("match_count")


def test():
    Base.metadata.drop_all()
    Base.metadata.create_all()

    from sys import version_info as py_version
    from sqlalchemy import __version__ as sa_version

    print(f"PY version={py_version}")
    print(f"SA version={sa_version}")
    print(f"SA engine={engine.name}")
    print("=" * 80)

    # 1. test data
    matches = [
        Match(date=_date("2020-01-01")),
        Match(date=_date("2020-01-02")),
        Match(date=_date("2020-01-03")),
        Match(date=_date("2020-01-05")),
        Match(date=_date("2020-01-05")),
        Match(date=_date("2020-01-10")),
    ]
    session.add_all(matches)
    session.commit()
    print("=" * 80)

    # 2. test query in "in-memory"
    for m in session.query(Match):
        print(m, m.match_count(3))
    print("=" * 80)

    # 3. test query on "SQL"
    session.expunge_all()
    q = session.query(Match, Match.match_count(3))
    for match, match_count in q:
        print(match, match_count)
    print("=" * 80)


if __name__ == "__main__":
    test()

Koden ovan ger följande utdata:

============================================================
PY version=sys.version_info(major=3, minor=8, micro=1, releaselevel='final', serial=0)
SA version=1.3.20
SA engine=postgresql
============================================================
<Match(date=datetime.date(2020, 1, 1), match_id=1)> 0
<Match(date=datetime.date(2020, 1, 2), match_id=2)> 1
<Match(date=datetime.date(2020, 1, 3), match_id=3)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=4)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=5)> 3
<Match(date=datetime.date(2020, 1, 10), match_id=6)> 0
============================================================
<Match(date=datetime.date(2020, 1, 1), match_id=1)> 0
<Match(date=datetime.date(2020, 1, 2), match_id=2)> 1
<Match(date=datetime.date(2020, 1, 3), match_id=3)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=4)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=5)> 3
<Match(date=datetime.date(2020, 1, 10), match_id=6)> 0
============================================================

medan frågan q skulle vilja ha nedan (i postgresql ):

SELECT match.match_id,
       match.date,

  (SELECT count(other.match_id) AS count_1
   FROM match AS other
   WHERE other.match_id < match.match_id
     AND other.date <= match.date
     AND other.date >= match.date - %(date_1)s) AS match_count
FROM match

En sak jag skulle vilja påpeka är att "in-memory"-kontrollen inte är särskilt effektiv, eftersom man måste fråga databasen för varje Match exempel. Därför skulle jag använda den sista frågan om möjligt.




  1. SQL Inner Join

  2. Välj det största antalet från MYSQL-tabellen med tillagt prefix

  3. Minskar prestandan genom att introducera främmande nycklar till MySQL

  4. HAProxy Connections vs MySQL Connections - Vad du bör veta