Jag blir verkligen intresserad av vad som skulle vara snabbare, så jag har testat några möjliga sätt att jämföra dem:
- enkel
executemany
utan knep. - samma med
APPEND_VALUES
ledtråd i uttalandet. union all
tillvägagångssätt du har försökt i en annan fråga. Detta bör vara långsammare än ovan eftersom det genererar en verkligen mycket stor uttalande (som potentiellt kan kräva mer nätverk än själva data). Det bör sedan analyseras på DB-sidan som också kommer att ta mycket tid och försumma alla fördelar (inte prata om potentiell storleksgräns). Sedan har jagexecutemany
Jag gjorde det för att testa med bitar för att inte bygga ett enda uttalande för 100 000 poster. Jag använde inte sammanlänkning av värden i uttalandet, eftersom jag ville hålla det säkert.insert all
. Samma nackdelar, men inga fackföreningar. Jämför det medunion
version.- serialisera data i JSON och gör deserialisering på DB-sidan med
json_table
. Potentiellt bra prestanda med en enda kort sats och enkel dataöverföring med lite overhead av JSON. - Ditt föreslagna
FORALL
i PL/SQL-omslagsprocedur. Bör vara samma somexecutemany
sedan gör detsamma, men på databassidan. Overhead för omvandling av data till samlingen. - Samma
FORALL
, men med kolumnär metod för att skicka data:skicka enkla listor med kolumnvärden istället för komplex typ. Bör vara mycket snabbare änFORALL
med insamling eftersom det inte finns något behov av att serialisera data till samlingstyp.
Jag har använt Oracle Autonomous Database i Oracle Cloud med gratis konto. Varje metod exekverades 10 gånger i loop med samma indatauppsättning av 100 000 poster, tabell återskapades före varje test. Det här är resultatet jag har fått. Förberedelse- och exekveringstider här är datatransformation på klientsidans slut DB-anrop.
>>> t = PerfTest(100000)
>>> t.run("exec_many", 10)
Method: exec_many.
Duration, avg: 2.3083874 s
Preparation time, avg: 0.0 s
Execution time, avg: 2.3083874 s
>>> t.run("exec_many_append", 10)
Method: exec_many_append.
Duration, avg: 2.6031369 s
Preparation time, avg: 0.0 s
Execution time, avg: 2.6031369 s
>>> t.run("union_all", 10, 10000)
Method: union_all.
Duration, avg: 27.9444233 s
Preparation time, avg: 0.0408773 s
Execution time, avg: 27.8457551 s
>>> t.run("insert_all", 10, 10000)
Method: insert_all.
Duration, avg: 70.6442494 s
Preparation time, avg: 0.0289269 s
Execution time, avg: 70.5541995 s
>>> t.run("json_table", 10)
Method: json_table.
Duration, avg: 10.4648237 s
Preparation time, avg: 9.7907693 s
Execution time, avg: 0.621006 s
>>> t.run("forall", 10)
Method: forall.
Duration, avg: 5.5622837 s
Preparation time, avg: 1.8972456000000002 s
Execution time, avg: 3.6650380999999994 s
>>> t.run("forall_columnar", 10)
Method: forall_columnar.
Duration, avg: 2.6702698000000002 s
Preparation time, avg: 0.055710800000000005 s
Execution time, avg: 2.6105702 s
>>>
Det snabbaste sättet är bara executemany
, inte så mycket överraskning. Intressant här är att APPEND_VALUES
förbättrar inte frågan och får mer tid i genomsnitt, så detta kräver mer utredning.
Om FORALL
:som förväntat tar individuell matris för varje kolumn mindre tid eftersom det inte finns någon dataförberedelse för den. Det är mer eller mindre jämförbart med executemany
, men jag tror att PL/SQL-overhead spelar en viss roll här.
En annan intressant del för mig är JSON:den mesta tiden ägnades åt att skriva LOB i databasen och serialisering, men själva frågan var väldigt snabb. Skrivoperationen kanske kan förbättras på något sätt med chuncsize eller något annat sätt att skicka LOB-data till select-satsen, men från min kod är det långt ifrån väldigt enkelt och okomplicerat tillvägagångssätt med executemany
.
Det finns också möjliga tillvägagångssätt utan Python som bör vara snabbare som inbyggda verktyg för extern data, men jag testade dem inte:
Nedan är koden jag har använt för att testa.
import cx_Oracle as db
import os, random, json
import datetime as dt
class PerfTest:
def __init__(self, size):
self._con = db.connect(
os.environ["ora_cloud_usr"],
os.environ["ora_cloud_pwd"],
"test_low",
encoding="UTF-8"
)
self._cur = self._con.cursor()
self.inp = [(i, "Test {i}".format(i=i), random.random()) for i in range(size)]
def __del__(self):
if self._con:
self._con.rollback()
self._con.close()
#Create objets
def setup(self):
try:
self._cur.execute("drop table rand")
#print("table dropped")
except:
pass
self._cur.execute("""create table rand(
id int,
str varchar2(100),
val number
)""")
self._cur.execute("""create or replace package pkg_test as
type ts_test is record (
id rand.id%type,
str rand.str%type,
val rand.val%type
);
type tt_test is table of ts_test index by pls_integer;
type tt_ids is table of rand.id%type index by pls_integer;
type tt_strs is table of rand.str%type index by pls_integer;
type tt_vals is table of rand.val%type index by pls_integer;
procedure write_data(p_data in tt_test);
procedure write_data_columnar(
p_ids in tt_ids,
p_strs in tt_strs,
p_vals in tt_vals
);
end;""")
self._cur.execute("""create or replace package body pkg_test as
procedure write_data(p_data in tt_test)
as
begin
forall i in indices of p_data
insert into rand(id, str, val)
values (p_data(i).id, p_data(i).str, p_data(i).val)
;
commit;
end;
procedure write_data_columnar(
p_ids in tt_ids,
p_strs in tt_strs,
p_vals in tt_vals
) as
begin
forall i in indices of p_ids
insert into rand(id, str, val)
values (p_ids(i), p_strs(i), p_vals(i))
;
commit;
end;
end;
""")
def build_union(self, size):
return """insert into rand(id, str, val)
select id, str, val from rand where 1 = 0 union all
""" + """ union all """.join(
["select :{}, :{}, :{} from dual".format(i*3+1, i*3+2, i*3+3)
for i in range(size)]
)
def build_insert_all(self, size):
return """
""".join(
["into rand(id, str, val) values (:{}, :{}, :{})".format(i*3+1, i*3+2, i*3+3)
for i in range(size)]
)
#Test case with executemany
def exec_many(self):
start = dt.datetime.now()
self._cur.executemany("insert into rand(id, str, val) values (:1, :2, :3)", self.inp)
self._con.commit()
return (dt.timedelta(0), dt.datetime.now() - start)
#The same as above but with prepared statement (no parsing)
def exec_many_append(self):
start = dt.datetime.now()
self._cur.executemany("insert /*+APPEND_VALUES*/ into rand(id, str, val) values (:1, :2, :3)", self.inp)
self._con.commit()
return (dt.timedelta(0), dt.datetime.now() - start)
#Union All approach (chunked). Should have large parse time
def union_all(self, size):
##Chunked list of big tuples
start_prepare = dt.datetime.now()
new_inp = [
tuple([item for t in r for item in t])
for r in list(zip(*[iter(self.inp)]*size))
]
new_stmt = self.build_union(size)
dur_prepare = dt.datetime.now() - start_prepare
#Execute unions
start_exec = dt.datetime.now()
self._cur.executemany(new_stmt, new_inp)
dur_exec = dt.datetime.now() - start_exec
##In case the size is not a divisor
remainder = len(self.inp) % size
if remainder > 0 :
start_prepare = dt.datetime.now()
new_stmt = self.build_union(remainder)
new_inp = tuple([
item for t in self.inp[-remainder:] for item in t
])
dur_prepare += dt.datetime.now() - start_prepare
start_exec = dt.datetime.now()
self._cur.execute(new_stmt, new_inp)
dur_exec += dt.datetime.now() - start_exec
self._con.commit()
return (dur_prepare, dur_exec)
#The same as union all, but with no need to union something
def insert_all(self, size):
##Chunked list of big tuples
start_prepare = dt.datetime.now()
new_inp = [
tuple([item for t in r for item in t])
for r in list(zip(*[iter(self.inp)]*size))
]
new_stmt = """insert all
{}
select * from dual"""
dur_prepare = dt.datetime.now() - start_prepare
#Execute
start_exec = dt.datetime.now()
self._cur.executemany(
new_stmt.format(self.build_insert_all(size)),
new_inp
)
dur_exec = dt.datetime.now() - start_exec
##In case the size is not a divisor
remainder = len(self.inp) % size
if remainder > 0 :
start_prepare = dt.datetime.now()
new_inp = tuple([
item for t in self.inp[-remainder:] for item in t
])
dur_prepare += dt.datetime.now() - start_prepare
start_exec = dt.datetime.now()
self._cur.execute(
new_stmt.format(self.build_insert_all(remainder)),
new_inp
)
dur_exec += dt.datetime.now() - start_exec
self._con.commit()
return (dur_prepare, dur_exec)
#Serialize at server side and do deserialization at DB side
def json_table(self):
start_prepare = dt.datetime.now()
new_inp = json.dumps([
{ "id":t[0], "str":t[1], "val":t[2]} for t in self.inp
])
lob_var = self._con.createlob(db.DB_TYPE_CLOB)
lob_var.write(new_inp)
start_exec = dt.datetime.now()
self._cur.execute("""
insert into rand(id, str, val)
select id, str, val
from json_table(
to_clob(:json), '$[*]'
columns
id int,
str varchar2(100),
val number
)
""", json=lob_var)
dur_exec = dt.datetime.now() - start_exec
self._con.commit()
return (start_exec - start_prepare, dur_exec)
#PL/SQL with FORALL
def forall(self):
start_prepare = dt.datetime.now()
collection_type = self._con.gettype("PKG_TEST.TT_TEST")
record_type = self._con.gettype("PKG_TEST.TS_TEST")
def recBuilder(x):
rec = record_type.newobject()
rec.ID = x[0]
rec.STR = x[1]
rec.VAL = x[2]
return rec
inp_collection = collection_type.newobject([
recBuilder(i) for i in self.inp
])
start_exec = dt.datetime.now()
self._cur.callproc("pkg_test.write_data", [inp_collection])
dur_exec = dt.datetime.now() - start_exec
return (start_exec - start_prepare, dur_exec)
#PL/SQL with FORALL and plain collections
def forall_columnar(self):
start_prepare = dt.datetime.now()
ids, strs, vals = map(list, zip(*self.inp))
start_exec = dt.datetime.now()
self._cur.callproc("pkg_test.write_data_columnar", [ids, strs, vals])
dur_exec = dt.datetime.now() - start_exec
return (start_exec - start_prepare, dur_exec)
#Run test
def run(self, method, iterations, *args):
#Cleanup schema
self.setup()
start = dt.datetime.now()
runtime = []
for i in range(iterations):
single_run = getattr(self, method)(*args)
runtime.append(single_run)
dur = dt.datetime.now() - start
dur_prep_total = sum([i.total_seconds() for i, _ in runtime])
dur_exec_total = sum([i.total_seconds() for _, i in runtime])
print("""Method: {meth}.
Duration, avg: {run_dur} s
Preparation time, avg: {prep} s
Execution time, avg: {ex} s""".format(
inp_s=len(self.inp),
meth=method,
run_dur=dur.total_seconds() / iterations,
prep=dur_prep_total / iterations,
ex=dur_exec_total / iterations
))