sql >> Databasteknik >  >> RDS >> PostgreSQL

PostgreSQL 12:Implementering av K-Nearest Neighbor Space Partitioned Generalized Search Tree Index

Värdet av indexering

PostgreSQL tillhandahåller en enkel linjär avståndsoperatör <-> (linjärt avstånd). Vi kommer att använda detta för att hitta punkter som är närmast en given plats.

PostgreSQL tillhandahåller en enkel linjär avståndsoperatör data, och om vi inte utför några optimeringar och utan index ser vi följande exekveringsplan:

time psql -qtAc "
EXPLAIN (ANALYZE ON, BUFFERS ON)
SELECT name, location
FROM geonames
ORDER BY location <-> '(29.9691,-95.6972)'
LIMIT 5;
"  <-- closing quote
                                      QUERY PLAN
-----------------------------------------------------------------------------------------------------------
Limit  (cost=418749.15..418749.73 rows=5 width=38) 
        (actual time=2553.970..2555.673 rows=5 loops=1)
  Buffers: shared hit=100 read=272836
  ->  Gather Merge  (cost=418749.15..1580358.21 rows=9955954 width=38) 
                    (actual time=2553.969..2555.669 rows=5 loops=1)
        Workers Planned: 2
        Workers Launched: 2
        Buffers: shared hit=100 read=272836
        ->  Sort  (cost=417749.12..430194.06 rows=4977977 width=38)
                 (actual time=2548.220..2548.221 rows=4 loops=3)
              Sort Key: ((location <-> '(29.9691,-95.6972)'::point))
              Sort Method: top-N heapsort  Memory: 25kB
              Worker 0:  Sort Method: top-N heapsort  Memory: 26kB
              Worker 1:  Sort Method: top-N heapsort  Memory: 25kB
              Buffers: shared hit=100 read=272836
              ->  Parallel Seq Scan on geonames  (cost=0.00..335066.71 rows=4977977 width=38) 
                                        (actual time=0.040..1637.884 rows=3982382 loops=3)
                    Buffers: shared hit=6 read=272836
Planning Time: 0.493 ms
Execution Time: 2555.737 ms

real    0m2.595s
user    0m0.011s
sys    0m0.015s

och här är resultaten:(samma resultat för alla förfrågningar, så vi utelämnar dem senare.)

namn plats
Cypress (29.96911,-95.69717)
Cypress Pointe Baptist Church (29.9732,-95.6873)
Cypress Post Office (29.9743,-95.67953)
Hot Wells (29.95689,-95.68189)
Dry Creek Airport (29.98571,-95.68597)

Så 418749,73 är OPTIMIZER-kostnaden att slå, och det tog två och en halv sekund (2555,673) att köra den frågan. Detta är faktiskt ett mycket bra resultat, med PostgreSQL utan några optimeringar alls mot en tabell på 11 miljoner rader. Det är också anledningen till att vi valde en större datamängd, eftersom det skulle vara väldigt minimal skillnad med index mot mindre än 10 miljoner rader. Parallella sekventiella skanningar är fantastiska, men det är en annan artikel.

Lägga till GiST-index

Vi börjar optimeringsprocessen genom att lägga till ett GiST-index. Eftersom vår exempelfråga har en

LIMIT

klausul om 5 artiklar har vi en mycket hög selektivitet. Detta kommer att uppmuntra planeraren att använda ett index, så vi tillhandahåller ett som fungerar ganska bra med geometridata.

time psql -qtAc "CREATE INDEX idx_gist_geonames_location ON geonames USING gist(location);"

Att skapa indexet har lite av en kostnad.

CREATE INDEX
real    3m1.988s
user    0m0.011s
sys     0m0.014s

Och kör sedan samma fråga igen.

time psql -qtAc "
EXPLAIN (ANALYZE ON, BUFFERS ON)
SELECT name, location
FROM geonames
ORDER BY location <-> '(29.9691,-95.6972)'
LIMIT 5;
"
                                      QUERY PLAN
----------------------------------------------------------------------------------
Limit  (cost=0.42..1.16 rows=5 width=38) (actual time=0.797..0.881 rows=5 loops=1)
  Buffers: shared hit=5 read=15
  ->  Index Scan using idx_gist_geonames_location on geonames  
            (cost=0.42..1773715.32 rows=11947145 width=38) 
            (actual time=0.796..0.879 rows=5 loops=1)
        Order By: (location <-> '(29.9691,-95.6972)'::point)
        Buffers: shared hit=5 read=15
Planning Time: 0.768 ms
Execution Time: 0.939 ms

real    0m0.033s
user    0m0.011s
sys     0m0.013s

I det här fallet ser vi en ganska dramatisk förbättring. Den uppskattade kostnaden för frågan är bara 1,16! Jämför det med den ursprungliga kostnaden för den ooptimerade frågan på 418749.73. Den faktiska tiden som togs var 0,939 millisekunder (nio tiondelar av en millisekund), vilket kan jämföras med den ursprungliga frågans 2,5 sekunder. Detta resultat tog kortare tid att planera, fick en dramatiskt bättre uppskattning och tog cirka 3 storleksordningar mindre körtid.

Låt oss se om vi kan göra bättre.

Lägga till ett SP-GiST-index

time psql -qtAc "CREATE INDEX idx_spgist_geonames_location ON geonames USING spgist(location);"
CREATE INDEX 

real    1m25.205s
user    0m0.010s
sys        0m0.015s

Och sedan kör vi samma fråga igen.

time psql -qtAc "
EXPLAIN (ANALYZE ON, BUFFERS ON)
SELECT name, location
FROM geonames
ORDER BY location <-> '(29.9691,-95.6972)'
LIMIT 5;
"
                                      QUERY PLAN
-----------------------------------------------------------------------------------
 Limit  (cost=0.42..1.09 rows=5 width=38) (actual time=0.066..0.323 rows=5 loops=1)
   Buffers: shared hit=47
   ->  Index Scan using idx_spgist_geonames_location on geonames  
            (cost=0.42..1598071.32 rows=11947145 width=38) 
            (actual time=0.065..0.320 rows=5 loops=1)
         Order By: (location <-> '(29.9691,-95.6972)'::point)
         Buffers: shared hit=47
 Planning Time: 0.122 ms
 Execution Time: 0.358 ms
(7 rows)

real    0m0.040s
user    0m0.011s
sys        0m0.015s

Wow! Med ett SP-GiST-index kostade frågan bara 1,09 och exekveras på 0,358 millisekunder (en tredjedel av en millisekund).

Låt oss undersöka några saker om själva indexen och se hur de staplas mot varandra på disken.

Indexjämförelser

indexnamn skapningstid uppskattning frågetid indexstorlek planera tid
oindexerad 0S 418749.73 2555.673 0 .493
idx_gist_geonames_location 3M 1S 1.16 .939 ms 868 MB .786
idx_spgist_geonames_location 1M 25S 1.09 .358 ms 523 MB .122

Slutsatser

Så vi ser att SP-GiST är dubbelt så snabb som GiST i exekvering, 8 gånger snabbare att planera och cirka 60 % av storleken på disken. Och (relevant för den här artikeln) stöder den också KNN-indexsökning från och med PostgreSQL 12. För denna typ av operation har vi en klar vinnare.

Bilagor

Konfigurera data

För den här artikeln kommer vi att använda data som tillhandahålls av GeoNames Gazetteer.
Detta arbete är licensierat under en Creative Commons Attribution 4.0-licens
Datan tillhandahålls "i befintligt skick" utan garanti eller representation av noggrannhet, aktualitet eller fullständighet.

Skapa strukturen

Vi startar processen genom att skapa en arbetskatalog och lite ETL.

# change to our home directory
cd
mkdir spgist
cd spgist
# get the base data.  
# This file is 350MB.  It will unpack to 1.5GB
# It will expand to 2GB in PostgreSQL,
#    and then you will still need some room for indexes
#  All together, you will need about 
#  3GB of space for this exercise
#  for about 12M rows of data.

psql -qtAc "
CREATE TABLE IF NOT EXISTS geonames (
geonameid           integer primary key
,name               text 
,asciiname          text 
,alternatenames     text 
,latitude           numeric(13,5) 
,longitude          numeric(13,5)
,feature_class      text 
,feature_code       text 
,country            text 
,cc2                text 
,admin1             text 
,admin2             bigint 
,admin3             bigint 
,admin4             bigint 
,population         bigint 
,elevation          bigint 
,dem                bigint 
,timezone           text 
,modification date  );

COMMENT ON COLUMN geonames.geonameid          
 IS ' integer id of record in geonames database';
COMMENT ON COLUMN geonames.name               
 IS ' name of geographical point (utf8) varchar(200)';
COMMENT ON COLUMN geonames.asciiname          
 IS ' name of geographical point in plain ascii characters, varchar(200)';
COMMENT ON COLUMN geonames.alternatenames     
 IS ' alternatenames, comma separated, ascii names automatically transliterated, 
    convenience attribute from alternatename table, varchar(10000)';
COMMENT ON COLUMN geonames.latitude           
 IS ' latitude in decimal degrees (wgs84)';
COMMENT ON COLUMN geonames.longitude          
 IS ' longitude in decimal degrees (wgs84)';
COMMENT ON COLUMN geonames.feature_class      
 IS ' http://www.geonames.org/export/codes.html, char(1)';
COMMENT ON COLUMN geonames.feature_code       
 IS ' http://www.geonames.org/export/codes.html, varchar(10)';
COMMENT ON COLUMN geonames.country            
 IS ' ISO-3166 2-letter country code, 2 characters';
COMMENT ON COLUMN geonames.cc2                
 IS ' alternate country codes, comma separated, ISO-3166 2-letter country code, 
    200 characters';
COMMENT ON COLUMN geonames.admin1             
 IS ' fipscode (subject to change to iso code), see exceptions below, 
    see file admin1Codes.txt for display names of this code; varchar(20)';
COMMENT ON COLUMN geonames.admin2             
 IS ' code for the second administrative division, a county in the US, 
    see file admin2Codes.txt; varchar(80) ';
COMMENT ON COLUMN geonames.admin3             
 IS ' code for third level administrative division, varchar(20)';
COMMENT ON COLUMN geonames.admin4             
 IS ' code for fourth level administrative division, varchar(20)';
COMMENT ON COLUMN geonames.population         
 IS ' bigint (8 byte int) ';
COMMENT ON COLUMN geonames.elevation          
 IS ' in meters, integer';
COMMENT ON COLUMN geonames.dem                
 IS ' digital elevation model, srtm3 or gtopo30, average elevation of 3''x3'' 
    (ca 90mx90m) or 30''x30'' (ca 900mx900m) area in meters, integer. 
    srtm processed by cgiar/ciat.';
COMMENT ON COLUMN geonames.timezone           
 IS ' the iana timezone id (see file timeZone.txt) varchar(40)';
COMMENT ON COLUMN geonames.modification       
 IS ' date of last modification in yyyy-MM-dd format';
"  #<-- Don't forget the closing quote

ETL

wget http://download.geonames.org/export/dump/allCountries.zip
unzip allCountries.zip

# do this, and go get a coffee.  This took nearly an hour
#   there will be a few lines that fail, they don't really matter much
IFS=$'\n'

for line in $(<allCountries.txt)
do

    echo -n "$line" | 
        psql -qtAc
    "COPY geonames FROM STDIN WITH CSV DELIMITER E'\t';"
2> errors.txt
done

Städa upp och konfigurera

Allt annat gör vi inifrån psql:

psql
-- This command requires the installation
--  of postgis2 from your OS package manager.
-- For OS/X that was `port install postgresql12-postgis2`
-- it will be something similar on most platforms.
-- (e.g. apt-get install postgresql12-postgis2, 
--  yum -y install postgresql12-postgis2, etc.)
CREATE EXTENSION postgis;
CREATE EXTENSION postgis_topology;

ALTER TABLE geonames ADD COLUMN location point;

-- Go get another cup of coffee, this is going to rewrite the entire table with the new geo column.
UPDATE geonames SET location = ('(' || latitude || ', ' || longitude || ')')::point;

DELETE FROM geonames WHERE latitude IS NULL or longitude IS NULL;
-- DELETE 32   -- In my case, this ETL anomoly was too small
--  to bother fixing the records

-- Bloat removal from the update and delete operations
CLUSTER geonames USING geonames_pkey;

  1. Säkerhetskopiera endast SQL-schema?

  2. Hur visar jag ett MySQL-fel i PHP för en lång fråga som beror på användarens input?

  3. MySQL:@variabel vs variabel. Vad är skillnaden?

  4. Heroku och Rails:Gem Load Error med Postgres, men det är specificerat i GEMFILE